Supervisors Looking for Graduate Students

Updated: July 2022

Dr. Philipp Blanke is an Assistant Professor at the Department of Radiology, University of British Columbia and a cardiac radiologist at St. Paul’s Hospital, Vancouver. He is the Director of the Cardiac CT Core Lab at St. Paul’s Hospital, which supports clinical trials in the field of transcatheter heart valve replacement and repair in regard to CT imaging for screening and follow up. His major research interest is cardiac CT imaging for procedural planning and optimization of transcatheter heart valve repair and replacement, post-procedural imaging and valve thrombosis as well as artificial intelligence for structural heart CT imaging.

Dr. Blanke is currently the Core Laboratory PI for several multi-center clinical in transcatheter aortic, mitral, tricuspid and pulmonic valve replacement. Imaging concepts are being developed and employed to improve patient and device selection as well as to identify averse anatomical risk.

Dr. Blanke’s lab is currently recruiting graduate students. Please contact Dr. Blanke ( for further information.

Christian G. Schütz, MD, PhD, MPH, FRCPC is Professor of Psychiatry at the Institute of Mental Health, UBC in Canada. Trained in Medicine (MD at Freiburg University, Germany), Humanities (PhD at Munich University, Germany), and Public Health (MPH at Johns Hopkins University, USA) he further completed a Fogarty-Fellowship at NIDA/NIH and a DISCA-Fellowship at Yale UniversityHe has published more than 150 peer reviewed articles, and more than a dozen book chapters, mainly on substance use and concurrent disorders. His works clinically at Red Fish Healing Centre and conducts research on treatment infrastructure, clinical interventions (clinical trials, cohorts), and neurobiological mechanism underlying transdiagnostic mechanism such as cognitive control (fMRI and EEG). A recent focus has been psychedelic assisted psychotherapy for substance use disorders.

Please contact Dr. Schütz ( for further information.

There are numerous opportunities for pursuing doctoral and post-doctoral research on drug safety and effectiveness using state of the art genotyping and sequencing platforms to identify the genetic determinants of severe adverse drug reactions (ADRs) in pediatric and adult populations.  Other ways of studying drug safety or effectiveness utilize pharmacoepidemiological or pharmacokinetic methods. Drug research in our labs focus on discovery research with human subjects, validation studies with both human subjects and cell models, implementation science methods to translate findings into practice and other methods such as drug repurposing to improve the safety of drug use.

Please contact Dr. Bruce Carleton ( for more information.

Dr. Tony Cooper is a pediatric orthopaedic surgeon at BC Children’s Hospital and leads the multidisciplinary Pediatric Limb Lengthening and Reconstruction program. His research involves several multicentre studies focused on the development of new patient-reported outcome measures, health quality of life of children with limb differences, complications of limb lengthening and reconstruction, genetics of rare orthopaedic conditions, geometrical modelling, and medical imaging studies. He is also leading the development of an international registry for children with limb differences.

Please visit the following link for further details of the research program and a list of publications.


Dr. Syam Somasekharan is an assistant professor at the University of British Columbia (UBC) and a senior research scientist at the Vancouver Prostate Centre. Graduating with a PhD in biochemistry at the Indian Institute of Science, Dr. Somasekharan proceeded to do his post-doctoral fellowships at the Department of Cell Biology, University of Geneva and the Department of Pathology, UBC, investigating the molecular mechanisms of apoptosis and mRNA translation. After his post-doctoral research, Dr. Somasekharan received the Early Career Research Award from the Government of India and served as a Ramanujan Fellow at the Indian Institute of Technology.

Dr. Somasekharan’s laboratory is located at the Vancouver Prostate Centre and focuses on RNA biology. The laboratory is particularly interested in interdisciplinary research to understand the molecular mechanism of regulation of RNA in health and disease. Current research programs in the Somasekharan laboratory include:
(1) the relationship between RNA granule machinery and prostate cancer treatment resistance,
(2) the role of epitranscriptomic (m6A) RNA modifications in the translational regulation of androgen receptor (AR) mRNA,
(3) the mechanism of liquid-liquid phase separation (LLPS) of intrinsically disordered proteins - G3BP1, FMRP and YTHDF3- and RNA,
(4) molecular mechanisms of the control of gene expression at multiple levels - mRNA synthesis, transport, translation, localisation and degradation, and
(5) multiomics approach to profile RNA granules and define selective mRNA translation.

The goal of Dr. Kuchenbauer is to improve the treatment of patients with hematological diseases. Our work is driven by analyzing clinical factors and outcomes to improve local patient treatments as well as taking advantage of preclinical animal models to better understand the physiology of normal and malignant hematopoiesis. We are looking for outstanding, motivated graduate students as well as postdoctoral fellows to join the Kuchenbauer Lab, who can share our passion for medicine/science and want to make a difference for patients´ lives. Multiple positions are available. Interested candidates should send a statement of research interest, curriculum vitae and contact details of 3 referees to Dr. Arefeh Rouhi ( More information at

Drug resistance is one of the main treatment barriers in cancer therapy. Understanding how resistance emerges and how to overcome it are crucial to the development of new therapeutics. Dr. Arefeh Rouhi is interested in understanding the molecular mechanisms of drug resistance as well as relapse in acute myeloid leukemia (AML) and multiple myeloma (MM). Factors such as tumor heterogeneity as well as cell intrinsic and microenvironmental changes lead to drug refraction. Understanding these mechanisms and creating novel drug combinations targeting multiple tumorigenic pathways, will result in a more specific, efficient and sustained therapy with potentially less side-effects. More information at

For specific inquiry related to research projects, please email

Dr. Laksman’s lab works to develop translational multidisciplinary projects focused on cardiac disease, genomics,  and drug screening. Areas of particular  interest include personalized medicine, stem cell derived diseases models, machine learning, bioinformatics, tissue engineering, and high throughput drug screening. Strong preference for individuals with experience in stem cell culture and cardiac differentiation. Interested applicants should email Dr. Laksman directly ( You may learn more about the research projects at

Dr. Staples is a Clinical Assistant Professor in the Department of Medicine, Division of General Internal Medicine. Dr. Staples’ research interests include traffic safety, medical risk factors for injury and unplanned readmissions to hospital. He seeks to use the techniques of clinical epidemiology and British Columbia’s powerful population-based data resources to generate novel insights and improve population health.

Ongoing research projects includes a study that examines the influence of physician financial incentives on the risk of unplanned hospital readmission; a study that examines resource use after hospitalization for serious infection; a study examining crash risks after syncope and after cardioverter-defibrillator implantation; a study that examines antipsychotic adherence and crash risk among individuals with schizophrenia; and a study examining risk of drug overdose following discharge against medical advice.

Prospective Graduate Students: Dr. Staples will consider co-supervision of graduate students in Experimental Medicine for the upcoming academic year. Please refer to graduate admissions for admission requirements. For specific inquiry related to research projects, please email

Publications: NCBI or Google Scholar

Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the GI tract that affects approximately 240,000 individuals in Canada, with 20% diagnosed in childhood or adolescence. Epidemiologic studies suggest increasing incidence and changing disease phenotype in the Western world. The underlying etiology remains elusive since there are a variety of putative pathogenetic mechanism and variable time intervals between exposure to a putative trigger and onset of clinical disease. It is presently hypothesized that IBD develops in genetically susceptible individuals as a result of an abnormal response to intestinal microflora. Genetic susceptibility might be expressed as altered function of the intestinal epithelial barrier or a defective/ dysregulated immune system. Our previous work in the laboratory has focused on the role of the epithelial barrier in intestinal inflammatory disease and potential modifiers including diet (probiotics, polyunsaturated fatty acids, dietary fiber), enteric pathogens and enteric neuropeptides. Our epidemiological studies are focused on population health outcomes, spatial distribution of disease and environmental determinants of disease.

Dr Denise Daley, Associate Professor of Medicine and Principal Investigator Center for Heart and Lung Innovation at UBC, is looking for MSc and PhD students for an upcoming project funded by CIHR and Genome BC. The ideal candidate will have a background in genetics, epidemiology, statistics  and/or biomedical informatics, but strong candidates from diverse backgrounds will be considered. All candidates must be highly motivated and committed to the project and the team.
This project will focus on a comparison of the epigenome in response to environment exposures in the context of a longitudinal birth cohort.  Dr. Daley and her team have a strong track record of supervising and mentoring trainees, students will receive a monthly stipend in accordance with the University of British Columbia graduate studies requirements. You can learn more about our lab at  Please send a CV and letter of interest to Dr. Denise Daley (

Dr. Lianping Ti

Lianping Ti, PhD, is a Research Scientist and Health Administrative Data Lead for the BC Centre on Substance Use. She is also an Assistant Professor in the Department of Medicine at the University of British Columbia. Dr. Ti’s research utilizes linked administrative datasets, coupled with statistical and artificial intelligence methodologies to understand access and utilization of health services, as well as disease progression and treatment outcomes among people who use drugs. An epidemiologist by training, she leads a project of a province-wide, population-level linked administrative cohort that aims to evaluate naturally occurring policies and interventions to optimize health systems for people living with substance use disorders. She is also the Principal Investigator of research studies that seek to evaluate novel harm reduction interventions, including point-of-care drug checking technologies, as well as a system-wide hospital opioid stewardship program. She also has international research experience working on a serial cross-sectional mixed-methods study to explore experiences with access to health and harm reduction services among people who inject drugs in Bangkok, Thailand.


Dr. Pat Camp

Graduate student positions are available in the UBC Pulmonary Rehabilitation Research Laboratory, located at St. Paul's Hospital within the UBC Centre for Heart Lung Innovation. Dr. Camp's research falls under three main pillars (see below): Indigenous lung health; telerehabilitation; and pulmonary rehabilitation for patients hospitalized with COPD. We are looking for dynamic and highly motivated students who are interested in learning field research, health-service delivery research, mixed methods or epidemiological studies in lung disease, in a diverse learning environment. Student stipends are available. Interested candidates should review the lab website at, and contact Dr. Camp via her lab manager Ashley Kirkham at

Indigenous lung health. Study 1 is to estimate the prevalence of chronic obstructive pulmonary disease in First Nations communities in north-central BC. We are also identify specific risks related to respiratory symptoms including indoor air quality and occupation. Study 2 is to develop a First Nations pulmonary rehabilitation program, that could include using telehealth to deliver a program. Study 3 aims to develop emergency planning for people with chronic disease living in remote and rural First Nations communities.

Telerehabilitation. We are conducting feasibility studies of wearable devices that support the delivery of pulmonary rehabilitation services in low access locations.

Pulmonary rehabilitation for individuals hospitalized with an acute exacerbation of COPD. This research program aims to investigate the health services delivery issues related to providing pulmonary rehabilitation in the hospital setting for patients with COPD who are admitted with an exacerbation of their disease. Research questions will include: current practice patterns related to inpatient exercise and mobility; barriers and facilitators to initiating these programs, key components of programs, program components [including exercise and education], and use of interdisciplinary teams.

Dr. Pascal Lavoie

As of Sept 2019, graduate student positions are open in the Lavoie lab to study immune mechanisms and the development of immune functions in humans in the early stages of life.

Research in the Lavoie Lab uses a variety of advanced immunology and molecular tool, including ‘-omics” tools to study how innate and adaptive immune function mature and develops before and shortly after birth. Our long-term goal is to generate new, exciting knowledge that can improve diagnosis and prevention of severe life-threatening infections in this age group.

For more information about this research visit:, see also the Lavoie Lab web page at:, or simply contact:

Dr. Viviane Dias Lima
My research program focus is on identifying strategies to diminish the gap in the delivery of care to those afflicted by HIV in British Columbia and around the world. Through ongoing national/international collaborations and research grants, we plan to create a unique three-branch program in the field of quantitative research based on different analytical approaches, including: biostatistical methods to analyze health services delivery data and clinical data; disease mapping methods to analyze trends in disease morbidity and mortality; and mathematical models of disease progression and transmission. This program will create great research opportunities and will provide a new setting in BC where trainees will be supported across a variety of disciplinary and methodological backgrounds. In addition, since HIV has become a chronic disease, the methodology that will be developed in this program can be generalized to analyze similar issues in other chronic and infectious diseases. Check Dr. Lima's website for further information.

Dr. Paul A. Keown

Dr. Keown is a Professor in the Department of Medicine, Division of Nephrology. Dr Keown’s research focuses particularly on the immune response in transplantation and autoimmune disease, and ranges from molecular genetics to healthcare economics. His research program utilizes several research approaches including next-generation sequencing, molecular biology, biochemistry, cell-based assays and flow cytometry.

Dr Keown is currently leading a large Genome Canada funded project whose aim is to improve outcomes in kidney transplantation. The work being conducted in the laboratory include:

  • Improving donor matching through human leukocyte antigen epitope typing
  • Identifying clinical risk in patient through the development of novel immune monitoring methodologies
  • Developing personalized therapeutic treatment through systems pharmacology

Please contact Karen Sherwood ( for further information.

Dr. Zachary Laksman

Dr. Laksman’s research spans the breadth of clinical and basic science discovery and innovation in the fields of cardiogenetics, stem cell disease modeling and drug screening.  He is a clinical cardiac electrophysiologist at St. Paul’s hospital and has close relationships and affiliations with UBC, SFU, and BC Children’s hospital. Ongoing research studies include the genetic causes of atrial fibrillation and sudden cardiac death, human induced pluripotent stem cell disease modeling of cardiac disease, and employing stem cell derived cardiomyocytes for high throughput drug screening.

The Laksman lab is currently recruiting graduate students.


Dr. Eugenia Socías

Dr. Eugenia Socías is a Research Scientist with the BC Centre on Substance Use and Assistant Professor in the Division of AIDS, Department of Medicine at the University of British Columbia. With a background in infectious diseases and addiction medicine, Dr. Socías’ research interests focus on health services and clinical research in substance use, HIV, and HCV, particularly as they relate to the optimization of health care delivery. She has over eight years of experience in conducting observational and interventional research in HIV, HCV, and addiction medicine, and with vulnerable populations.

Dr. Socías is the Principal Investigator of: (1) OPTIMA, CRISM’s first national RCT comparing the effectiveness of methadone and buprenorphine/naloxone models of care, and (2) an pRESTO an RCT evaluating the potential of slow-release oral morphine for the treatment of opioid use disorder.


Dr. Janice Leung

I am a respirologist at St. Paul's Hospital and the Centre for Heart Lung Innovation and my main interest is in HIV-associated lung disease, particularly COPD. My lab is translational, using sequencing platforms to better understand the pathophysiology of airway injury in HIV and COPD. We study the microbiome, methylation, and gene expression in airway epithelial cells and have cross collaborations with HIV experts to look at the impact of HIV on airway epithelial cell models. Our lab has an active research bronchoscopy program through which we collect primary patient cells for experimentation. I will be supervising MSc students and co-supervising PhD students in Experimental Medicine Program.

Contact is or 604-806-8346.

Dr. Kishore Mulpuri

Kishore Mulpuri is a pediatric orthopedic surgeon at BC Children’s Hospital and a Professor and the Head of the Department of Orthopedics at the University of British Columbia. His clinical research interests focus on the pediatric hip, trauma, and cerebral palsy. The Hippy Lab, of which he is the Principal Investigator, leads multiple international observational registries that collect prospective data on pediatric patients with hip conditions and trauma. His research team emphasizes collaboration and inclusiveness to improve hip health and trauma outcomes on a global scale.

Dr. Mulpuri is currently looking for a graduate student to coordinate a prospective study that measures subjective and objective levels of physical activity along with potential correlates in children with hip conditions. If you are interested in learning more about this opportunity, please email a cover letter and curriculum vitae to the HIPpy Lab Research Coordinator, Ashley Munoz, at

Dr. Neil Reiner

The Reiner laboratory is concerned with host defense against intracellular infection and how intracellular microbes disrupt cellular functions to favor their survival. One of the major interests in laboratory is to understand the strategies used by intracellular pathogens to effectively prevent macrophage activation. Very recently, we identified c-Myc as a novel virulence factor by proxy, contributing to leishmania pathogenesis. An important objective is to investigate how this c-Myc driven strategy may otherwise be used by leishmania to affect cell regulation leading to altered macrophage phenotype. Also, studies are in progress to examine the role of PI3K as a master regulator of innate immunity to leishmania, and the contributions of small, non-coding RNAs to leishmania pathogenesis.

Appointment to a PhD studentship position requires admission to the PhD program in Experimental Medicine at UBC. The period of funding is 4 years with a possibility of an extension for one more year. Interested individuals should send a cover letter, CV, and the names/phone numbers of three people who could provide letters of reference by email to Closing date is April 1, 2018

Dr. Gregor Reid
Our research aims to define the interactions between the immune system and cancer cells and to use this knowledge to design effective new immune-based treatments. Our primary focus is pediatric leukemia and we use a variety of in vitro and in vivo approaches to identify the components of a protective immune response against disease progression and to design strategies to induce such activity in patients.

Dr. Mahyar Etminan, Associate Professor of Ophthalmology and Visual Sciences

The Department of Ophthalmology and Visual Sciences at UBC is accepting applications for prospective PhD students in the area of ocular epidemiology with a focus on diabetes. Potential candidates will have the opportunity to pursue a unique program of research in population based ocular epidemiology using the British Columbia Linked Databses in addition to others.  The Collaboration for Epidemiology of Ocular Diseases (CEPOD) is a unit that specializes in ocular epidemiology within the department. CEPOD has a strong track record in ocular epidemiology specifically in the areas of retinal diseases, glaucoma, and ocular drug safety.

Retinal Diseases - CEPOD has undertaken a number of novel studies on health outcomes (effectiveness, safety and utilization) in the area of age related macular degeneration which were published in high impact journals.

Glaucoma - Population based glaucoma studies have been another area of interest for CEPOD. A number of studies have been completed looking at the correlation between glaucoma and other comorbid conditions such as erectile dysfunction and risk of glaucoma with different prescription drugs.

Cornea - This is an up and coming area of reseach. A number of studies are under way and one study has been published in the area of herpes reactivation and corneal injury.

The ideal candidate will have a MSc degree in epidemiology, public health or related disciplines. Strong grasp of SAS programming or other quantitative or analytical skills is preferred but not required. The candidate's research will focus on effectiveness, safety and utilization of ocular diabetic interventions in BC.  Interested candidates can send a CV and cover letter to

Dr. Christopher Carlsten, Professor of Medicine and Head of Respiratory Medicine at UBC, is looking for a PhD student for an upcoming project funded by Genome BC. The ideal candidate will have a background in microbiology and/or biomedical informatics, but strong candidates from diverse backgrounds will be considered. All candidates must be highly motivated and committed to the project and the team.
This project will focus on a comparison of the microbiome in our environment, versus that within our lungs, specifically in those with COPD. Microbes in our lungs, by definition, originated from elsewhere and that may very well be from the air around us, especially in our homes where we spend a lot of our time. If there are commonalities between the microbiome in these two microenvironments, we can use the results to design interventions that may alter the relationship between the two and thereafter test these interventions to see if they can beneficially alter clinically meaningful parameters. This project is in collaboration with the Nanyang Technological University in Singapore and Dr. Janice Leung of UBC Respiratory Medicine.  Dr. Carlsten and his team have a strong track record of supervising and mentoring trainees at various levels to launch into a diversity of successful careers. Trainees will receive a monthly stipend in accordance with the University of British Columbia graduate studies requirements. You can learn more about our lab at
If you are interested in this graduate studies opportunity, please send your curriculum vitae to Dr. Christopher Carlsten at

Dr. Yvonne Lamers

My enthusiasm for research draws from my interest in the biochemistry and physiology of nutrition-related diseases and in targeted and population-based strategies of chronic disease prevention and optimal health promotion. My research focuses on micronutrients and specifically B-vitamins and their kinetics and functions in human metabolism. B-vitamins are required for normal cell growth and neurological function and thus have an impact on human health from the embryo to the older adult. Low folate and/or vitamin B-12 status may yield pregnancy complications, low birth weight, cancer, and cognitive impairment.
The overarching theme of my research is micronutrient adequacy. My current research projects focus on maternal-fetal nutrient dependency, periconceptional vitamin adequacy, and the role of maternal and infant nutrition on growth and development. In the UBC Nutritional Biomarker Laboratory that I established, my team has set up a wide array of externally validated analytical methods. One of our goals is to identify sensitive nutritional biomarkers for early diagnosis of micronutrient inadequacies. With the use of stable isotope tracer protocols, we are able to investigate metabolic and functional consequences of nutritional inadequacies and micronutrient interactions in various population groups. The studies will help elaborate potential underlying mechanisms responsible for linkages between B-vitamin intake and chronic disease risk and in the evaluation of optimal vitamin intake to maintain biochemical functions.
I am interested in supervising graduate students with strong interests in biochemistry, nutrition, and biomarker analysis. Ideal candidates have strong communication skills for interaction with study participants and have experience or high interest in potential projects with a wet lab component. To read more about our current projects, team members, or highlights, please see:
Current opening: 1 PhD position, CIHR-funded project with the goal to develop accessible blood indicators for vitamin B2 (riboflavin) status assessment and identify which most sensitively reflect dietary intakes and food sources of vitamin B2 in adults, using biospecimen and survey data from Canadian and Irish cohort studies. In this international and multidisciplinary project, we will also demonstrate an important health effect of vitamin B2 by investigating its role in modulating blood pressure via a novel gene-nutrient interactive effect.
If interested, please send your resume to

Dr. Kevin Harris
Research Area:  Preventive Cardiology; Cardiovascular Outcomes; Interventional Pediatric Cardiology.

As a pediatric cardiologist based at BC Children’s Hospital and the BC Children’s Hospital Research Institute, my clinical research program ranges from preventive cardiology – where we evaluate and promote healthy living in children with congenital and non-congenital cardiovascular disease – to interventional pediatric cardiology– where we are interested in optimizing outcomes of interventional cardiac catheterizations and pediatric cardiac surgery.

I am currently seeking a graduate student as part of a large Heart & Stroke Foundation funded research project that investigates the association between vascular health and physical activity in children with complex congenital heart disease. If you are interested in learning more about this opportunity, contact me via email with a cover letter and curriculum vitae.

Dr. Aly Karsan
Myelodysplastic syndromes, blood cancers, hematopoiesis, Notch, innate immune signaling.

Dr. Bradley Quon

Dr. Quon’s research program is focused on improving health outcomes in cystic fibrosis. He is developing novel blood biomarkers to improve cystic fibrosis pulmonary exacerbation outcomes. He is also involved in several national and international clinical trials and epidemiological studies examining novel therapeutics, infections, and health outcomes in cystic fibrosis.

Dr. Alan I. So

His research focuses on the study of development of novel therapeutics for bladder cancer. He has characterized the functional role of different survival genes (including clusterin and Hsp27) in different tumor models (prostate, breast, lung, and bladder) in cancer progression. His current research projects focuses on: 1)discovery and development of novel agents to treat bladder cancer; 2) development of the mechanisms of treatment resistance in renal cell carcinoma and most recent project 3) 3D bioprinting of bladder cancer tumors as a platform for personalized medicine, involving tissue engineering and regeneration.  He is active in clinical trials across Canada and is a member of National Cancer Institute of Canada GU Clinical Trials Group and Canadian Uro-Oncology Group. Currently, he leads the Clinical Trials Unit at the Vancouver Prostate Cancer and is the Chair of the Urology Surgical Tumour Group at the BC Cancer Agency.

The Vancouver Prostate Centre, RHNH, #265 - 2660 Oak S., Vancouver, BC, Canada V6H 3Z6 604-874-5681

Dr. Liam Brunham

Dr. Brunham is a clinician-scientist whose research focuses on understanding how changes in specific genes contribute to differences in drug-response as well as to alterations in plasma lipid levels and their relationship to metabolic and cardiovascular diseases. His laboratory uses a variety of approaches including genetic association studies, next-generation sequencing, and functional genomics to investigate the role of genetic variation in these phenotypes.

Current projects in the laboratory include:

1) Identification of rare variants that contribute to alterations in plasma lipid levels.
2) Identification of genetic variants underlying severe adverse drug reactions.
3) Modeling the functional impact of genetic variants on drug-response in genome-edited human cells.

Dr. Doris Doudet

The role and function of the monoaminergic systems, with particular emphasis on dopamine (DA) .

Dr. Linda Li

PhD student positions are available in Dr. Linda Li’s Arthritis, Joint Health & Knowledge Translation Research (Arthritis-KTR) Program to study the role of digital technologies in supporting self-management for people with arthritis. Dr. Li is Associate Professor and Harold Robinson/Arthritis Society Chair at the Department of Physical Therapy, University of British Columbia, and Senior Scientist at the Arthritis Research Centre of Canada. Example of current projects include:

1) Arthritis Care in the Digital Age

2) ANSWER-2 (A biologic decision aid for patients with rheumatoid arthritis)
A mixed-methods proof-of-concept study to develop and test a new patient decision aid that supports people with rheumatoid arthritis to make informed treatment decisions with their doctor.

3) OPEN (Osteoarthritis Physical Activity & Exercise Net)
A randomized controlled trial to assess the efficacy of an interactive website that aims to help people with osteoarthritis to improve their physical activity.

Students who are interested should contact Dr. Li at

Dr. Dirk Lange
The research interests in the Lange laboratory are in the area of Endourology, specifically benign urology.  Current research interests in the laboratory are: a)Understanding and improving ureteral stent-induced morbidity (biomaterial design to prevent stent-associated urinary tract infections, device encrustation, and patient discomfort. b)Understanding the ureteral response to indwelling stents, kidney stones, and ureteral obstruction. Specifically we are interested in identifying molecular mechanisms that drive ureteral dysfunction associated with indwelling ureteral stents and obstruction, as well as the recovery of normal ureteral function following reversal of the obstruction. c) Understanding the role of the intestinal microbiome in recurrent kidney stone disease.

Current Graduate Student positions available are in the development of novel antifouling coatings for ureteral stents. The position will involve testing the efficacy of novel antifouling coating formulations at preventing fouling of the indwelling device (protein deposition, encrustation, bacterial biofilm formation) in relevant in vitro and in vivo models developed in our laboratory.

Below is some background information regarding the scope of the problem.

Ureteral stenting is one of the most commonly performed procedures in urology to promote urinary drainage from the kidney to the bladder. They are most frequently used in conjunction with procedures to treat kidney stones and for reconstructive surgery of the ureter. Despite their widespread use, ureteral stents are fraught with complications associated with biofouling of the stent material with the most common being infection and encrustation. Studies have shown that up to 90% of stents are colonized with bacteria, despite the use of antibiotics, which is due to pathogenic bacteria being harbored in a protective bacterial biofilm. Encrustation rates rise dramatically with longer indwelling times. As a result, the long-term use of stents is limited, requiring regular stent exchanges and treatment of infections that result in significant patient morbidity and cost to the healthcare system. New materials and coatings to address these complications have not been successful, due to the diversity of bacterial species, significant variability in stent material physical characteristics and the deposition of a urinary conditioning film on the stent surface within minutes of device insertion. This conditioning film is particularly detrimental as it covers any novel material or coating rendering it ineffective, and facilitates bacterial adhesion and encrustation. Therefore, the development of a coating that inhibits a broad spectrum of bacteria in their biofilm state, in addition to overcoming the challenges of conditioning film deposition and encrustation would be a novel approach to prevent stent-associated complications.

Dr. Christopher Carlsten

The Carlsten lab is always looking for highly-motivated, energetic and team-oriented trainees, at all levels, who are attracted to the COERD mission. Such individuals should email him at

Dr. Carlsten directs the Centre for Occupational and Environmental Respiratory Disease (COERD), the mission of which is to gain new understanding of the mechanisms involved in occupational and environmental lung disease through laboratory and clinical research, and to translate this knowledge into improved diagnostic, therapeutic, and preventative tools for the benefit of public health. The centrepiece of COERD, which emphasizes a highly interdiscliplinary and team-oriented environment, strong financial support from diverse stakeholders, and a rich network of local and international collaboration, is the Air Pollution Exposure Lab (APEL).

The following are key themes at APEL:
Health effects of toxic inhalants (“air pollution”, diesel exhaust, allergens, phthalates, respiratory, cognitive and immunologic effects)
Controlled inhalation models (humans, ‘in vivo’, experimental approaches to validate epidemiologic models, crossover study design)
Effects of complex inhaled exposures (synergy, adjuvancy, additive and multiplicative effects (statistical, functional), biological plausibility)
Translational research (state-of-the-art lab methods within experiments that concretely address public health concerns)
Understanding effects of genetics on pollutant effect (gene-by-environment analysis, oxidative stress, vulnerability, susceptibility)
Lab Website

Dr. Xuesen Dong

Ph.D graduate student positions are available in Dr. Xuesen Dong’s lab to study roles of steroid receptors and coregulators in prostate cancer and in premature labour. Our lab is located in Vancouver Prostate Centre, University of British Columbia. We are looking for dynamic and highly motivated applicants to join our laboratory that employs a multi-disciplinary approach to investigate androgen and progesterone signalling in cancer and myometrial cells (reference PMID: 19423654, 17452459, 21566083). Candidate with background in molecular or cell biology are encouraged. Interested candidates should send their CVs, including laboratory skills, and a cover letter together with the names and contact information of three references by email to

Dr. Jan Dutz

Epicutaneous modulation of T cell function Recent evidence suggests that proteins or peptides can be applied on intact skin to vaccinate and produce both an antibody and a T cell response. Epicutaneous immunization (that is, on intact skin) offers potential for the development of tumour and virus-specific vaccines. In addition, it may be more cost effective as well as easier to administer than current methods of immunization. We are studying the epicutaneous application of peptides and proteins and methods to enhance their delivery and immunogenicity. In addition to being an ideal organ for the initiation of immune responses, the skin can suppress immune responses. It is particularly effective in this regard after exposure to ultraviolet light. Consequently, we are also studying how the skin may be used to induce tolerance and thereby possibly treat autoimmune disease.

SLE, UV light and T cell priming in the skin Systemic lupus erythematosus (SLE) is an autoimmune disorder that can have devastating consequences. Lupus often begins in the skin and can worsen with exposure to sunlight. Recent experimental data in mouse models suggests that the skin may be the organ where T cells are first activated in lupus. Recent data also suggest that cytotoxic T cells may be involved in the initiation of lupus autoimmunity. A better understanding of how the skin may initiate immune responses will shed light on the role of the skin in initiating and/or perpetuating disease activity in systemic lupus erythematosus.

Treating diabetes by modulating cross presentation Type 1 diabetes mellitus is an autoimmune disease in which insulin-producing cells (termed beta cells) in the pancreas are destroyed. We have determined that beta cell death in the pancreas allows beta cell antigens to be processed by specialized antigen presenting cells called dendritic cells. These dendritic cells can then activate diabetes-inducing cytotoxic T cells through a process termed cross-presentation. We are currently determining which additional factors are required for the detrimental cross-presentation of self-antigen and how this may be inhibited.

Dr. Kevan Jacobson

Inflammatory Bowel Disease (IBD) is a chronic, relapsing inflammatory disorder of the GI tract that affects approximately 170,000 individuals in Canada, with 20-25% diagnosed in childhood or adolescence. Epidemiologic studies suggest increasing incidence and changing disease phenotype in the Western world. The underlying etiology remains elusive since there are a variety of putative pathogenetic mechanism and variable time intervals between exposure to a putative trigger and onset of clinical disease. It is presently hypothesized that IBD develops in genetically susceptible individuals as a result of an abnormal response to intestinal microflora. Genetic susceptibility might be expressed as altered function of the intestinal epithelial barrier or a defective/ dysregulated immune system. Our work in the laboratory is focusing on the role of the epithelial barrier in intestinal inflammatory disease and potential modifiers including diet (probiotics, polyunsaturated fatty acids), enteric pathogens and enteric neuropeptides.

Dr. Megan Levings

Graduate student positions are open in the Leving's lab to study regulatory T cells and develop ways to treat diseases which are caused by insufficient immune tolerance.

Research in the laboratory is focused on CD4+ T regulatory (Treg) cells, which control immune homeostasis. Although we know that Treg cells have a fundamental role in regulating immunity to both self and foreign proteins, little is known about how they function. Current work is focused on determining how Treg cells differ from normal CD4+ T cells at both the biochemical and molecular levels, and elucidating their role in transplantation tolerance, cancer and inflammatory bowel disease. A long-term goal is to develop methods to generate Treg cells in vitro for use as a cellular therapy to replace standard immuno-suppression in the context of organ transplantation or to restore tolerance in the context of autoimmunity. For more information please visit the

Dr. Lucy Marzban

Type 1 diabetes and islet transplantation: Identifying the cell death signalling pathways by which non-immune factors such as islet amyloid formation mediate beta-cell death in human islets during pre-transplant culture and following transplantation. Through these studies we hope to find new approaches to enhance survival and function of islet grafts in type 1 diabetic recipients.

Type 2 diabetes and beta-cell apoptosis: Identifying the molecular mechanisms by which islet amyloid formation mediates beta-cell death in type 2 diabetes and finding new ways to prevent amyloid toxicity.

Role of islet alpha cells in diabetes: Investigating the underlying molecular mechanisms that contribute to the better survival of islet alpha-cells in conditions associated with beta-cell death such as type 2 diabetes, islet culture, and transplantation.

Dr. Chris Maxwell

Interactions between various microtubule-associated proteins promote the nucleation of microtubules for the assembly of the mitotic spindle, permitting the alignment of genetic material and its equivalent segregation to daughter cells. Our past research has identified proteins that work together during cell division and shown that these proteins are also vital for differentiation.

Our ongoing projects include:

  • During mitotic spindle assembly and exit, microtubule organization and genome stability are determined by genetic and molecular interactions between gene/proteins. Using established technologies and phosphorylation mutants among other reagents, the interplay between these gene/proteins will be investigated to better understand division and the generation of genomic instability. Priority will be given to the translation of our results towards novel clinical knowledge, as previously published for adult leukemias and carcinomas, and clinical benefit.
  • Epithelial specialization, terminal differentiation and apicobasal polarity are reliant, in part, upon cytoskeletal reorganization and turnover of microtubule nucleating factors. These results provide a new perspective on differentiation and cancer risk associated with BRCA1 mutation. Using established technologies and reagents, we will investigate microtubule reorganization during neuronal differentiation and interrogate the mechanism(s) of tumorigenesis for pediatric brain tumors. A priority of the research program will be the application of knowledge to the development of better clinical tools for childhood brain tumors.

Many classical cancer therapies, as well as radiation, target cell division and/or microtubules. We will focus on testing, modifying and optimizing the effectiveness of a novel, promising cancer therapy that disrupts microtubule organization. By genetic and/or chemical alteration of partner proteins, we hope to broaden the clinical options to treat aggressive adult and childhood tumors.

Dr. Alice Mui

Signal transduction, gene regulation, transplantation, immunology and immune tolerance.

Dr. Chris Ong

The primary focus of Dr. Ong's research program is to understand the molecular mechanisms that govern the progression of prostate cancer from a state of androgen sensitivity to hormone independence with the hope of developing novel therapeutic strategies to prevent or delay the progression of prostate cancer to androgen independence. His primary focus has been on the PTEN tumour suppressor gene, which is among the most frequently mutated genes in cancer. One or both copies of PTEN is mutated in over 70% of primary prostate cancer and PTEN is completely inactivated in over 50% of advanced prostate cancer which correlates with a poor prognosis. Dr. Ong’s laboratory is currently studying how mutations of that gene confer protection of prostate cancer cells from cell death and resistance to chemotherapy as well as how loss of PTEN influences progression of prostate cancer cells to androgen independence. Implications from this research may lead to new therapeutic strategies designed to prevent or delay progression to androgen independence. Based on observations to date, Dr. Ong is testing the potential utility of several classes of small molecule drugs that act to down-modulate the PI3K survival pathway in the treatment of prostate cancer. These novel compounds have tremendous promise as lead compounds for development of therapeutics that target a primary defect associated with prostate cancer and other malignancies. Dr. Ong's laboratory is also involved in the development of unique prostate tumour model systems which are used to characterize the function of a number of genes in normal and malignant prostate biology.

Dr. Steve Plotkin

Dr. Steve Plotkin’s research group does research at the interface of physics and biology. Their interests range from the study of dynamics and disorder in the theory of protein folding, misfolding, and aggregation, to DNA function and dynamics, to studies of pattern formation and symmetry breaking in morphogenesis.

Dr. Neil Reiner

My laboratory is concerned with host defense against intracellular infection and how intracellular microbes disrupt cellular functions to favor their survival. Because of our interest in the role of macrophages in host defense, one focus of the laboratory is to identify pathways that regulate cell activation is response to key agonists such as IFN-y and bacterial lipopolysaccharide. This research has led to the identification of novel signaling pathways that regulate macrophage function. The second major interest in the laboratory is to understand the strategies used by intracellular pathogens to effectively prevent macrophage activation. This research focuses on identifying the pathways and molecules in macrophages targeted by intracellular pathogens and the corresponding microbial virulence factors involved. Pathogens under study include, Leishmania donovani, M. tuberculosis and Salmonella.

Dr. Chris Shaw

My laboratory's key focus over the last few years has been on the unusual neurological disease of Guam and the Western Pacific, ALS-parkinsonism dementia complex (ALS-PDC). I view this disease as a kind of neurological Rosetta Stone able to unlock some of the key questions in neurological disease research. For example: what are the causes of ALS, Parkinson's, and Alzheimer's and what are the pre-clinical stages of each? Our approach has been to create an in vivo animal model in which we can look at behavioural changes in motor and cognitive functions, as well as systems, cellular and biochemical modifications as the disease process emerges over time. We have identified a novel class of neurotoxins in the course of our initial studies and are now beginning to understand the toxic mechanisms of action that lead to the death of neurons in the spinal cord and brain. The overall goal of this work is to identify key etiological factors involved in sporadic neurological disease and the early stages of the disease process. From the first could come effective prophylaxis; from the latter, early phase treatment before irreversible damage to the CNS has been done.

A second theme to our work is to seek potential therapeutic agents for existing neurological disease states using the above, and other, animal models. In particular, we are focusing our attention on progranulin, a neuroepithelial growth factor, and on a class of molecules called ginsenosides. Preliminary data with progranulin suggests that the molecule can exert powerful neuroprotective effects and perhaps even reverse early phase neurodegeneration.

The last aspect of our work, and one that is still emerging, is to look at the potential for compounds such as aluminum to be neurotoxic. We are interested in the types of aluminum compounds that can cause neurodegeneration, their route of administration, the impact of dose and duration, and the crucial but largely unexplored aspects of age and sex. These studies are just beginning, but show great promise to help us understand the origin of neurological disorders as diverse as autism spectrum disorder and Alzheimer's disease.

Dr. Scott Tebbutt

Dr. Tebbutt’s research programme is focused on the genomics of complex respiratory disease, including the early and late reactions in allergic asthma and rhinitis. He also leads a multidisciplinary collaboration to investigate interactions between fungal spores and human airway cells. His research combines hypothesis-driven study of biological mechanisms with the development of advanced tools and technology (including bioinformatics and microfluidics-based systems) to better facilitate basic and translational research. Dr. Tebbutt has published original research contributions in journals such as the Proceedings of the National Academy of Sciences (U.S.A.), Journal of Medical Genetics, Genomics, BioTechniques, Bioinformatics, BMC Bioinformatics, BMC Medical Genomics and PLoS ONE. He has published numerous technical reviews as well as book chapters on the role of genetic variation in respiratory disease. He has served as reviewer on several grant panels, including the Canadian Institutes of Health Research and the Michael Smith Foundation for Health Research, and he is Associate Editor for the journal BMC Genetics.

Dr. Bruce Vallance

We co-exist in harmony with huge numbers of bacteria, many within our own gastrointestinal (GI) tracts. On occasion, however, particularly virulent bacteria called pathogens (Salmonella, EHEC O157:H7) infect our intestines and cause severe, even fatal, disease. To fight infections, our immune system must recognize these bacteria as harmful and trigger a protective immune response. Some individuals appear highly susceptible to infections, perhaps because their immune systems are unable to recognize or effectively deal with the bacteria. Inappropriate recognition of pathogens may also contribute to chronic diseases of the GI tract such as Crohn's disease and other inflammatory bowel diseases (IBD). We believe that in IBD an individual’s immune system mistakes harmless bacteria for pathogens and attacks them, causing chronic inflammation. Using immunological and microbiological techniques, we’re learning how our immune systems recognize bacteria in the GI tract. We’re also identifying the factors that can provide resistance or susceptibility to intestinal infections, and exploring the mechanisms underlying the dysfunctional pathogen recognition that can trigger chronic IBD.

Supervisors Looking for Post-doc Students

Dr. Gerald Krystal

Dr. Gerry Krystal in the Terry Fox Lab of the British Columbia Cancer Research Centre is looking for an enthusiastic post-doctoral fellow to work on the role of diet and inflammation on cancer. Please contact Dr. Krystal if interested.

Dr. Tobias Kollmann
Child and Family Research Institute
A5-147, 938 West 28th Ave; Vancouver, BC V5Z 4H4
Laboratory website:

Please click here to see the posting